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A Game-Theoretical Dynamic Model
for Electricity Markets

Aswin Kannan and Victor M. Zavala

Abstract—We present a game-theoretical framework that merges
electricity market models and model predictive control concepts.
We demonstrate that the framework can be used to systematically
analyze the effects of ramp constraints, initial conditions, dynamic
disturbances, forecast horizon, and bidding frequency on the price
signals. We illustrate the capabilities of the framework using a
numerical case study.

Index Terms—dynamics, markets, model predictive control,
game theory, bidding, ramps, forecast horizon, market clearing

NOMENCLATURE

Sets
S Set of suppliers
C Set of consumers
T Set of time steps

Variables
qit Production quantities (MW)
∆qit Incremental production quantities (MW)
pt Price ($/MW)
λit Adjoints for dynamic system ($/MW)
πi
t, π

i
t Multipliers production ($/MW)

νit, ν
i
t Multipliers ramps ($/MW)

γit Multipliers supply function ($/MW)
θit Multipliers supply function parameters

($/MW)

Constants
S Number of suppliers
C Number of consumers
T Number of time steps in horizon
djt Demand (MW)
ait, b

i
t Coefficients supply function (MW,MW/$)

hi, gi Coefficients cost function
($/MW,$/MW2)

ri, ri Bounds ramps ($/MW)
qi, qi Bounds production quantities ($/MW)
q̄i0 Initial conditions suppliers (MW)

I. INTRODUCTION

Electricity market modeling has become an area of active
research as a result of increasing levels of deregulation and
restructuring. Diverse models have been proposed to analyze
and predict the impact of different dynamic disturbances (e.g.,
weather, load, fuel prices, and wind supply), physical constraints
(e.g., transmission congestion), and gaming behaviors (e.g.,
bidding strategies) on market efficiency and prices [29]. These
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models range from data-based time-series models [26], [11] to
mechanistic models based on agent-based systems [9], [28] and
game-theoretical formulations [7], [17].

Game-theoretical models can be used to establish market
properties in a systematic manner and thus provide more
comprehensive predictive capabilities. Several models based on
a range of market structure assumptions have been proposed,
all of which are static in the sense that they assume some
sort of steady-state behavior of the fundamental market drivers.
These models can provide a reasonable representation of the
market under stationarity or strong periodicity of dynamic
disturbances. Consequently, they can be used to analyze long-
term behavior and physical constraints such as transmission
congestion in planning and market design exercises. However,
static models are not capable of explaining the effect of other
dynamic constraints and non-stationary behavior, which is the
most common case in real-time operations. Consequently, their
use in market monitoring and price forecasting is limited.

A widely used dynamic market model originally proposed
in [1], [2] assumes that the players bid recursively in the
direction that minimizes their marginal cost. Every bid can be
interpreted as a steepest-descent step that converges to a steady-
state equilibrium. While this model is useful for analyzing
static (instantaneous) market stability properties, it is based on
mathematical rather than mechanistic assumptions and thus has
limited applicability. Recently, a dynamic market model based
on model predictive control (MPC) concepts was proposed in
[16], [15]. Here, supply functions and forecast horizon concepts
are incorporated into the model. These concepts provide a more
natural representation of actual bidding procedures. This model
has been used to analyze the effect of wind supply variability
on prices under high penetration levels. A limitation of this
framework, however, is that the dynamic model of the players
is still based on the marginal-cost descent assumption.

The main observation motivating this work is that the impact
of generator dynamics on market behavior can be explained
and analyzed using model predictive control (MPC) concepts.
In particular, ramping constraints restrict bidding procedures
at subsequent time intervals (day-ahead and real-time markets)
and thus affect short-term and long-term (dynamic) market
stability and performance. In some sense, ramping constraints
affect market performance much as transmission congestion
does [13]. The key difference, however, is that the effect of
ramping constraints propagates forward in time while the effects
of transmission congestion are static (instantaneous).

The effects of manipulation of ramp constraints on market
behavior was studied in [23]. Ramp rates represent the maxi-
mum change that a generator can achieve in their power output
level within a given time interval [31]. They implicitly represent
the time that it will take the generator control system to move
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the power output level from the current level to the desired
target. These ramp rates depend on multiple physical factors
such as controller performance [3], [5], thermal stresses, and
wall capacitances [27]. Large generators such as those running
on coal and nuclear fuel are operated at base load and are not
ramped. Smaller generators and combined-cycle plants running
on natural gas provide ramping capacity and are used to regulate
real-time deviations of the loads from forecasts. The generation
costs of these ramping units are much higher than those of base
units due to higher prices of natural gas and capital costs. The
effect of ramping units on electricity prices will become stronger
in the presence of more volatile and dynamic environments,
such as those expected under high wind-supply penetration and
smart-grid programs.

We propose a game-theoretical dynamic model that uses a
closer physical representation of generator dynamics and of
bidding procedures based on supply functions. We demonstrate
that the model can be used to systematically simulate the effects
of ramping limits, initial conditions, intermittent supply, forecast
horizons, bidding frequency, and some other factors on price
stability. We provide numerical results under several operational
scenarios in order to illustrate the consistency and analytical
capabilities of the model. In addition, we discuss how the
model can potentially be used for market monitoring and price
forecasting.

The paper is structured as follows: In the following section
we present the basic model, discuss underlying assumptions, and
offer a solution strategy. In Section III we discuss closed-loop
implementation details using model predictive control concepts.
In Section IV we present numerical results. The last section
provides concluding remarks and directions for future work.

II. GAME-THEORETICAL DYNAMIC MODELS

In this section, we present two basic dynamic game-
theoretical models. The models are targeted to capture dynamic
effects on market performance. Consequently, simplifications
have been made to avoid unnecessary complexity. Potential
extensions are discussed later on as part of future work.

A. Nash-Cournot Formulation

We consider a unilateral market model where the suppliers
bid production quantities (power levels) to maximize their profit
and a central entity such as the Independent System Operator
(ISO) that clears the market by balancing supply and demand.
The consumer demands are assumed to be fixed. Each supplier
i ∈ S = {1..S} is assumed to solve the following problem:

max
qit

∑
t∈T

(
ptq

i
t − cit(qit)

)
(1a)

s.t. qit+1 − qit ≤ ri, t ∈ T − (1b)

qit − qit+1 ≤ ri, t ∈ T − (1c)

qi ≤ qit ≤ qi, t ∈ T (1d)

qi0 = q̄i0, (1e)

where T is the forecast horizon and T := {0..T} is the
set of time steps. We also define the set T − := T \ {T}.
Symbols ri and ri denote the down and up ramp rates. The
bidding production quantities qit are bounded by the down and

up limits qi
t

and qit, respectively. The initial conditions for
the production quantities are given by q̄i0 and are fixed. These
represent the current power output levels of the generators. The
cost function, defined by cit(·), is assumed to be any convex
function (e.g., linear, quadratic, or piece-wise linear). Here, we
consider quadratic costs of the form

cit(q
i
t) = hi · qit +

1

2
gi · (qit)2. (2)

The price is defined by pt and is given by by the market clearing
condition ∑

i∈S
qjt =

∑
j∈C

djt , (3)

where djt are the consumer demands j ∈ C = {1..C}. The
market clearing condition amounts to assuming that the ISO
minimizes the imbalance of supply and demand so the price
can be seen as the Lagrange multiplier of the clearing condition.
We note that this game can be posed as a discrete-time dynamic
game in state-space form∑

i∈S
qit =

∑
j∈C

djt , t ∈ T (4a)

i ∈ S
{

max
∆qit

∑
t∈T

(
ptq

i
t − cit(qit)

)
(4b)

s.t. qit+1 = qit + ∆qit, t ∈ T − (4c)

ri ≤ ∆qit ≤ ri, t ∈ T − (4d)

qi ≤ qit ≤ qi, t ∈ T (4e)

qi0 = q̄i0. (4f)

This representation is typical in the dynamic games literature
[8]. The state-space representation enables us to analyze the
market as a game-theoretical MPC problem. Here, the pro-
duction quantities qit can be interpreted as differential states
coupled in time, and the increments ∆qit can be interpreted as
the controls. The price acts as an algebraic state since it is not
directly coupled in time. The initial conditions play a critical
role on the overall market performance since they propagate
the effects of ramping constraints in time. In addition we note
that, in the presence of ramping constraints, the feasible set
of the game depends on the initial conditions. For instance, the
demand at future times might not be reachable for a given set of
initial conditions and ramping limits. The solution of the game
(??) gives equilibrium trajectories, or a dynamic equilibrium,
for the supply quantities and prices that satisfy the demands at
each point in time and maximize social welfare. Note that the
trajectories depends on the initial conditions, forecast horizon,
and on the ramp rates of the generators.

B. Supply-Function Based Formulation

An alternative formulation that represents actual market op-
erations more accurately is based on supply functions [25],
[7], [6]. Here, we assume that the supplier decisions are the
parameters of the supply function

qit(pt) = bitpt − ait. (5)
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If we assume that the bids and the market are cleared simulta-
neously, we get the following game∑

i∈S

(
bitpt − ait

)
=
∑
j∈C

djt , t ∈ T (6a)

i ∈ S
{

max
ai
t,b

i
t,∆qit

∑
t∈T

(
ptq

i
t − cit(qit)

)
(6b)

s.t. qit+1 = qit + ∆qit, t ∈ T − (6c)

qt = bitpt − ait, t ∈ T (6d)

ri ≤ ∆qit ≤ ri, t ∈ T − (6e)

qi ≤ qit ≤ qi, t ∈ T (6f)

bit ≥ 0, t ∈ T (6g)

qi0 = q̄i0. (6h)

Here, the price pt is given by the intercept between the sup-
ply and demand curves. The slope We note that the supply
function qt = bitpt − ait is an affine transformation between
the states. Thus we have that, for any pt, there exists a pair
ait, b

i
t yielding the optimal qit obtained from the Nash-Cournot

formulation (which must be nonnegative as well). Consequently,
both the Nash-Cournot and the supply-function based models
are equivalent and will reach the same solution. The difference
between the two is in the implementation. We also note that
the formulations proposed here give the same solution as if the
suppliers do not take into account ramping constraints and these
are handled centrally by the ISO.

One of the main advantages of game-theoretical models is that
they can be systematically extended to capture more detailed
effects arising in power markets. In particular, the proposed
models can be extended to capture transmission constraints,
social welfare and transmission costs in the ISO’s problems,
and arbitrager decisions [22]. Note also that the models assume
that bidding and market clearing occur simultaneously (single-
shot game). A more realistic representation can be considered
where the bids and market clearing occur sequentially [18]. Our
objective in this work is to understand how different dynamic
factors affect the performance of the market. Because of this, we
do not consider these more sophisticated market formulations.
While these formulations will give more realistic predictive
capabilities to the model, they do not provide extra information
into the basic concepts analyzed here.

C. Complementarity Formulations

To solve the dynamic game problems, we can formulate them
as coupled complementarity systems [17]. For the Nash-Cournot
game we define the Lagrange function for supplier i as follows:

Li =
∑
t∈T
−
(
ptq

i
t − cit(qit)

)
+
∑
t∈T −

λit+1

(
qit+1 − qit −∆qit

)
+ λi0(qi0 − q̄i0)

−
∑
t∈T −

νit
(
∆qit − ri

)
−
∑
t∈T −

νit
(
ri −∆qit

)
−
∑
t∈T

πi
t

(
qit − qi

)
−
∑
t∈T

πi
t

(
qi − qit

)
, i ∈ S. (7)

Here, λit are the Lagrange multipliers for the dynamic system
(adjoints) and νit, ν

i
t, π

i
t and πi

t are the bound multipliers. This

gives the following mixed linear complementarity system:

∑
i∈S

qit −
∑
j∈C

djt = 0, t ∈ T (8a)

∇qit
L = 0, t ∈ T

∇∆qit
L = 0, t ∈ T −

λit+1 ⊥ qit+1 −
(
qit + ∆qit

)
= 0, t ∈ T −

0 ≤ νit ⊥
(
∆qit − ri

)
≥ 0, t ∈ T −

0 ≤ νit ⊥
(
ri −∆qit

)
≥ 0, t ∈ T −

0 ≤ πi
t ⊥

(
qit − qi

)
≥ 0, t ∈ T

0 ≤ πi
t ⊥

(
qi − qit

)
≥ 0, t ∈ T

λi0 ⊥
(
qi0 − q̄i0

)
= 0


i ∈ S, (8b)

where

∇qit
Li = −pt +

∂cit
∂qit

+ λit − λit+1 − πi
t + πi

t = 0,

t ∈ T − (9a)

∇qiT
Li = −pT +

∂ciT
∂qiT

+ λiT − πi
T + πi

T = 0 (9b)

∇∆qit
Li = −λit+1 − νit + νit, t ∈ T −, (9c)

for i ∈ S . Note that the optimality conditions for the ISO’s
problem are just the market clearing conditions (??). The
adjoints λit of the dynamic constraints can be interpreted as
ramping prices, analogous to the congestion prices arising from
transmission constraints. These multipliers reflect the sensitivity
of the production costs to the ramp rates. If the generator is not
ramp-constrained, the multiplier will be zero. If the generator
is constrained, the magnitude of the multiplier will be given by
the generation cost. From (12) we can note that the ramping
prices are coupled in time and propagate backwards.

For the supply function formulation the Lagrange function
for supplier i is given by

Li
s =

∑
t∈T
−
(
ptq

i
t − cit(qit)

)
+
∑
t∈T −

λit+1

(
qit+1 − qit −∆qit

)
+ λi0(qi0 − q̄i0)

+
∑
t∈T

γit(q
i
t − bitpt + ait)

−
∑
t∈T −

νit
(
∆qit − ri

)
−
∑
t∈T −

νit
(
ri −∆qit

)
−
∑
t∈T

πi
t

(
qit − qi

)
−
∑
t∈T

πi
t

(
qi − qit

)
−
∑
t∈T

θit · bit, i ∈ S. (10)

Here, θit are bound multipliers for the supply function param-
eters, and γit are multipliers for the supply function constraint.
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This gives the following complementarity system:

∑
i∈S

(
bitpt − ait

)
=
∑
j∈C

djt , t ∈ T (11a)

∇qit
Ls = 0, t ∈ T

∇∆qit
Ls = 0, t ∈ T −

∇ai
t
Ls = 0, t ∈ T

∇bit
Ls = 0, t ∈ T

λit+1 ⊥ qit+1 −
(
qit + ∆qit

)
= 0, t ∈ T −

0 ≤ νit ⊥
(
∆qit − ri

)
≥ 0, t ∈ T −

0 ≤ νit ⊥
(
ri −∆qit

)
≥ 0, t ∈ T −

0 ≤ πi
t ⊥

(
qit − qi

)
≥ 0, t ∈ T

0 ≤ πi
t ⊥

(
qi − qit

)
≥ 0, t ∈ T

γit ⊥ qit − bitpt + ait = 0, t ∈ T
0 ≤ θit ⊥ bit ≥ 0, t ∈ T
λi0 ⊥

(
qi0 − q̄i0

)
= 0



i ∈ S, (11b)

where ∇qit
Ls and ∇∆qit

Ls are given by

∇qit
Li
s = −pt +

∂cit
∂qit

+ λit − λit+1 + γit − πi
t + πi

t = 0,

t ∈ T − (12a)

∇qiT
Li
s = −pT +

∂ciT
∂qiT

+ λiT + γiT − πi
T + πi

T = 0 (12b)

∇∆qit
Li = −λit+1 − νit + νit, t ∈ T −, (12c)

and,

∇bit
Li
s = −γit · pt − θit = 0, t ∈ T , (13)

for i ∈ S . We note that the supply function-based formulation
leads to the presence of bilinear terms in the complementarity
system, equation (13). This makes the problem computationally
more difficult.

D. Solution Strategy

The resulting complementarity systems can be extremely
large, depending on the length of the prediction horizon and
the number of players. To solve these systems, one can use
complementarity solvers such as PATH [12] or general nonlinear
optimization solvers such as KNITRO [10] and IPOPT [30].
For the problems considered in this work we have found that
a nonlinear optimization approach coupled to a `1 penalty
formulation is numerically more robust. In this approach, the
objective is to minimize the complementarity products [21],
[14], [4]. For (8), the problem takes the form:

min
∑
i∈S

∑
t∈T −

(
νit
(
∆qit − ri

)
+ νit

(
ri −∆qit

))
+
∑
i∈S

∑
t∈T

(
πi
t

(
qit − qi

)
+ πi

t

(
qi − qit

))
(14a)

s.t.
∑
i∈S

qit −
∑
j∈C

djt = 0, t ∈ T (14b)

∇qit
L = 0, t ∈ T

∇∆qit
L = 0, t ∈ T −

qit+1 −
(
qit + ∆qit

)
= 0, t ∈ T −

0 ≤ νit,
(
∆qit − ri

)
≥ 0, t ∈ T −

0 ≤ νit,
(
ri −∆qit

)
≥ 0, t ∈ T −

0 ≤ πi
t,
(
qit − qi

)
≥ 0, t ∈ T

0 ≤ πi
t,
(
qi − qit

)
≥ 0, t ∈ T(

qi0 − q̄i0
)

= 0


i ∈ S. (14c)

III. CLOSED-LOOP CONSIDERATIONS

To analyze real-time market operations, one can solve the
dynamic game problem in a receding-horizon manner with
a predefined forecast horizon T . The bidding frequency is
implicitly given by the sampling time. This can be used to
account for changing conditions of dynamic disturbances such
as weather, demands, forecast errors, and fuel prices.

The infinite horizon bidding game (T =∞) gives the optimal
equilibrium trajectory for a given disturbance forecast trajectory.
For implementation, however, a receding-horizon bidding strat-
egy is required to avoid computational limitations. The idea is to
define a finite horizon T to compute an equilibrium trajectory
and to carry out the state to the next window. Typically, the
day-ahead market is cleared with a forecast horizon of 24 to 36
hours. Our strategy starts at a given bidding time t` with initial
conditions qit` and to use these as initial conditions q̄i0 = qi`
to compute the dynamic equilibrium trajectory over horizon
T = {t`, ..., t` + T}. The initial conditions are then updated
to the generator states at the end of the horizon q̄i0 = qit`+T .
In other words, the horizon is shifted forward by T steps so
that the new bidding horizon is T = {t` +T, ..., t` + 2T}. This
is illustrated in Figure 1. We assume a deterministic setting
using perfect forecast in the day-ahead market. With this, it is
not necessary to model the real-time market, which takes care
of high-frequency load imbalances resulting from day-ahead
forecast errors.

The moving horizon policy provides an approximation to the
infinite horizon policy which provides the ideal performance.
One of the interesting questions that arise in this context is
how long the horizon should be?. This is often problem depen-
dent since it depends on the structure of the infinite horizon
equilibrium policy. We also note that, in the absence of ramp
constraints, the moving and infinite horizon policies coincide
since the states qit are no longer coupled in time. This holds
even in the presence of other steady-state constraints such as
transmission constraints, cost functions, and bidding strategies
such as supply functions. On the other hand, we note that, in the
presence of ramping constraints, any errors introduced by finite
horizon approximations and forecast errors propagate forward
in time through the generator states. This is one of the main
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reasons why the prediction horizon should be as long as possible
in order to foresee the future effects of ramping constraints.

Fig. 1. Schematic representation of moving horizon implementation.

IV. NUMERICAL RESULTS

In this section, we report on numerical simulations that we
conducted under several operational scenarios. Our objective
is to illustrate the effect of dynamic constraints on the price
dynamics and to demonstrate the consistency of the model. In
addition, we discuss the limitations of moving horizon bidding
in the presence of strong disturbances such load and wind supply
changes.

We consider a system with three suppliers and one demand.
One of the suppliers has fast dynamics (high ramping capacity)
but high cost such as natural gas generators, the second one has
slow dynamics but also low cost, and the third one is used as
a slack generator with infinite ramp limits (equal to generation
capacity) and a large cost. This last supplier acts as a slack
to avoid infeasibility. The nominal parameters used are q =
[0, 0, 0], q = [50, 70, 120], r = −[5, 10, 120], r = [5, 10, 120],
h = [4, 2, 5], and g = [2, 1, 5]. The ramps were varied in some
experiments from their nominal values. We used q̄0 = [0, 40, 40]
as initial conditions.
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Fig. 2. Total (top) and ramp (bottom) demand for market system over 14 days
of operation with 0% and 30% wind penetration.

We consider the demand profiles for two cases, one with
periodic demand (labeled as ”No Wind”) and one where the
periodic demand is shifted by a wind power profile representing

30% of wind penetration (labeled as ”30% Wind”). In the top
graph of Figure 2 we present total demands for the two cases.
The periodic demand fluctuates between 80 MW and 110 MW.
In the wind case, the net demand is shifted down (demand
minus wind supply) but becomes more volatile. In particular,
periodicity is partially destroyed.

In the bottom graph we present the ramp demands for the
two demand cases. These have been obtained by computing the
absolute differences |dt+1 − dt|, t ≥ 0. Note that even if the
net demand is lower in the wind case, the ramp demands can
increase significantly at particular points in time. This situation
can be observed clearly at the beginning of the third day. This
illustrates how ramping constraints can become more significant
under more volatile environments.

A. Effect of Ramp Rates

We first analyze the effect of ramping constraints. For this
analysis, we consider the case with periodic demand. In Figure
3 we present the dynamic equilibria for three ramp scenarios.
The first scenario, ”High Ramp”, corresponds to the nominal
ramp values, scenario ”Low Ramp” corresponds to a 50%
decrease in the nominal values of the suppliers, and ”Infinite
Ramp” corresponds to an unconstrained ramp case (ramps set
to large value). Note that in the constrained cases the price
signals reach a periodic steady-state after a couple of days.
In the absence of ramp constraints, the periodic steady-state is
reached immediately. Note also that the shape of the steady-state
equilibrium is affected by the ramp rates. In particular, the prices
are more volatile during high and low peaks when the ramps are
lower. In the ramp-constrained case the prices fluctuate between
100 $/MW and 40 $/MW in a single day. In the unconstrained
case, the prices fluctuate between 80$/MW and 65$/MW. In
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Fig. 3. Effect of ramp limits on price dynamics.

Figure 4 we can observe that the bidding quantities saturate
while reaching the periodic steady-state (dashed lines).

In Figure 5 we plot the adjoint variables λit for the three
suppliers. These multipliers reflect the sensitivity of the profit
for each supplier to changes in the ramp rates. Note that the
multipliers reach a steady-state after seven days and that the
greater sensitivity is observed during peaking times, as expected.
Supplier 2 is clearly the most sensitive since it has more limited
ramping capacity. The adjoint of the slack supplier is zero
since the ramps are never active. We have observed that the
adjoints tend to diverge for extremely long horizons, introducing
numerical problems in the solution. Divergence is attributed
mainly to the lack of a terminal constraint in the suppliers
problems. We have found that penalizing the profit in the last
time step T by a large value stabilizes the adjoints.
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Fig. 4. Effect of ramp limits on bidding dynamics. Solid lines are profiles
without ramp limits, and dashed lines are profiles with ramp limits.
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Fig. 5. Adjoint dynamics for suppliers in the presence of ramp limits.

B. Effect of Dynamic Disturbances

In Figure 6 we present the effect of ramps for the case of
30% wind power penetration. It is clear that the volatility of the
prices increases significantly as the ramp constraints become
tighter. In the presence of ramping constraints we observe that
wind supply introduces strong price variations. The price ranges
from 150$/MW to 40$/MW in a single day. In the unconstrained
case (infinite ramps), the prices are significantly more stable
and ranges from 60 $/MW to 40 $/MW in a single day. In
addition, we note that the price periodicity is stronger in the
absence of ramp constraints. This reflects a decreased sensitivity
to wind supply variations. This illustrates that, while the wind
supply cost might be very low, the increasing ramp demands
can increase price volatility significantly because of the need of
additional ramping capacity (natural gas).
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Fig. 6. Effect of ramp limits on bidding dynamics under 30% wind penetration
case.

C. Effect of Forecast Horizon

In Figure 7 we illustrate the effect of the forecast horizon on
the price signals. We compare the infinite horizon case and the
one day-ahead forecast. Note that suboptimality is introduced
during periods of strong dynamic variations. In the third day, the
prices of the day-ahead case reach 120$/MW while the optimal
ones are around 100$/MW. We have found that increasing the

horizon to two days approximates well the infinite horizon
policy. We have also found that, in the case of a perfectly
periodic demand, the one day and infinite horizon policies are
the same. A critical conclusion from this dynamic analysis is
that short horizons only work well under strong stationarity
(periodicity) of the load. In the presence of strong dynamic
disturbances (wind supply and weather fronts), the horizon
should be increased in order to keep prices more stable. This can
be explained from the fact that short horizons tend to position
generators at suboptimal production levels at the end of the
horizon from where subsequent demand profiles not considered
in the horizon might not be reachable or can only be reached
at a high cost.
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Fig. 7. Effect of horizon length on market performance under 30% wind
penetration case.

D. Effect of Market Manipulation

One of the main applications of game theoretical models is
the analysis of non-gaming behavior (e.g., market manipula-
tion). In Figure 8, we present the price signals for a perfect
game and for the case in which supplier 1 bids randomly (not
trying to maximize its profit). From the profiles, it is clear that
prices tend to become higher and more volatile in the presence
of non-gaming behavior. We note that suboptimal player bids
introduce noise to the optimal gaming policy obtained from the
market model and raises prices from $85/MW to 100 $/MW.
Having the MPC framework, the noise can be identified by
solving a state estimation problem. This capability can be used
to monitor the market in real-time and to forecast price signals.
Another potential use of an MPC framework is the design of
market clearing procedures that are less sensitive to noise and
manipulation.

V. CONCLUSIONS AND FUTURE WORK

We have presented a game-theoretical framework that merges
electricity market models and model predictive control concepts.
This enables a more systematic analysis of the effects of
dynamic constraints on market performance and price stability.
This also enables the analysis of the effect of initial conditions
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Fig. 8. Price signals under game-theoretic and random bids for supplier 1.

and forecast horizons. We have presented numerical experiments
to illustrate the consistency and analytical capabilities of the
model.

The proposed framework can be extended in a number of
ways to consider more detailed physical effects and market de-
sign structures such as transmission constraints and coupled day-
ahead and real-time markets (two-settlement markets) [32], [19].
In addition, it is possible to incorporate effects of uncertainty
and risk aversion [20]. The model can also be constructed with
more realistic set-ups where the suppliers bid their operational
information (ramp and production limits, cost curves) [23] and
the ISO clears the market by solving a unit commitment problem
in the day-ahead market and an economic dispatch model in the
real-time market [24], [33]. Other settings include information
exchange, cooperation, and use of forecasting capabilities by the
suppliers. These models, however, pose significant complexity
from a theoretical and numerical point of view.
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